
ICPC CERC 2021

Solution presentation

Ljubljana, 24. 4. 2022

F - Letters

Simulate shifting the letters in a matrix.

• low constraints (N, M, K <= 100)

• simulate all four directions (e.g., left)
– process letters from left to right

– shift each letter as far left as possible

k.l.ndi.

.....c..

......ih

j..a....

..cb....

..c...ef

klndi...

c.......

ih......

ja......

cb......

cef.....

H - Radar

Find closest point from the intersection points of rays and
concentric circles.

• too many intersections

• plane partitioning
– binary search for circular sector

– projection onto ray (A -> A’)

– binary search for nearest point to A’

• careful: regions are not circular

• O(N (log R + log F))

• precision not an issue

A - Airline

Find the number of shortest paths affected by an addition of
a new edge in a tree.

• find the path x – y
– lowest common ancestor, two paths

– small sum of d(x,y) … O(d), O(n log n)

• circular list of nodes with subtrees
– d(s’, t’) > d(x,y)/2

– compute size of subtrees

• careful with LCA

• O(d)

x

y

x y

s

t

s’ t’

K - Single-track railway

Minimize waiting time for trains going in opposite directions
along the same railway track.

• no updates

• assume left train must wait
– it should move as far as possible

– similar reasoning for the right one

• find the meeting point
– prefix sums pi, total time t

– rightmost station such that pi <= t/2, binary search

– waiting time left(i) = (t - pi) - pi

– answer = min(left(i), right(i+1))

20 70 40 10 50

• updates?

– data structure: modify value, compute prefix sum

– Fenwick tree: log(n) update and prefix sum query

– O(k log2 n)

– Segment tree (static binary tree)

– perform “binary search” by moving down the tree

– O(k log n)

20 70 40 80 50

L - Systematic salesman

Find the optimal order of visiting left/right and top/bottom
sets of points to minimize salesman’s total path.

• represent recursive partitioning as a binary tree
– sort, split, recurse

– operation: swap left and right subtrees

– goal: optimize leaf order

• f(x, l, r) = mina,b f(u, l, a) + d(a, b) + f(v, b, r)
– min cost when l is the leftmost and r the rightmost in the subtree of x

– O(n3) space? … x defined by l and r

– pairs l and r, l and a, b and r should be from different subtrees

– f(r, l) = f(l, r)

– O(n4) dynamic programming is too slow

left right
l ra b

x

u v

• f(l, r) = mina,b f(l, a) + d(a, b) + f(b, r)
– O(n2) computation -> O(n)

– split in two parts l – a – b and a – b – l

– auxiliary function g (finds optimal a to get from l to b)

– g(l, b) = mina f(l, a) + d(a, b)

– f(l, r) = minb g(l, b) + f(b, r)

• time O(n3), space O(n2)

• reconstruction: remember the optimal splits

• motivation: dendrograms (hierarchial clustering)
– Bar-Joseph et al., Fast optimal leaf ordering for hierarchical clustering. Bioinformatics (2001)

– Bar-Joseph, Demaine et al. K-ary clustering with optimal leaf ordering for gene expression
data. Bioinformatics (2003)

left right
l ra b

21 3 4

B - Building on the Moon

Count the number of maximum non-adjacent edge lightings
in a hexagonal structure.

• count maximum matchings

• perfect matching (red)
– use only passage edges

• small number of chambers (16)

• long passages (100)

• fix chamber edges that are not part of any passage (blue)
and solve the “independent” passages

• brute-force
– 8n infeasible (most cases don’t have a matching)

– decide for adjacent chambers (e.g. in DFS/BFS order)

• at most 4 cases, but mostly just 2

• additional improvements (not necessary)
– fix the node with the currently lowest number of possible cases

– dynamic programming with a profile of matched edges in outer
chambers

change: 1 unused: L+1 switch: 1 change: 1

I - Regional development

Construct a nowhere-zero M-flow from a nowhere-zero flow
modulo M.

• modular flow violates Kirchhoff’s law
at nodes by k∙M

• fix violations by “reversing” the flow
– path from a deficit node to an excess node

– send M units in the opposite direction

– remains nowhere-zero

– reduces violation at both ends by M

1 2

2

3

1

M=4
2 3

3

1

2

2

3

2

1

• solution always exists
– e(x) = in(x) – out(x), ∑e(x) = 0

– U … nodes reachable from u (e(u) < 0)
in the direction of flow

• all edges outside of U are incoming

– there must exist a node v ∈ U with e(v) > 0 (∑x∈U e(x) = in(U))

• O(R) violations by a factor of M … O(R (M + N))

• Ford-Fulkerson max flow
– link up deficit and excess nodes along the positive edges

• nowhere-zero flows are related to colorings of planar graphs

u

U

-e(x)/M

e(y)/M
S T

x
y

E - Fishing

Find rectangles with maximum sum within given regions of a
sparse matrix.

• fixed height, limited width

• Hj = 1
– maximum subarray sum in range

– segment tree

• sum, max subarray sum, max prefix, max suffix

• O(log M) query

• Hj are increasing
– matrix is sparse (only K nonzero entries)

– update the segment tree with new elements (log M affected nodes)

– O(K log M)

• solve for all heights and store segment trees
– O(N M) … too large

– build persistent segment trees (path copying)

– precomputation, space: O(K log M)

– query: O(log M)

x

-3 5

9

2

+x

G - Lines in a grid

Count the number of lines lying on at least two points of a
grid.

• simplifications
– #vert. = #horiz. = n

– #incr. = #decr.

• #flat = #steep, #diag. = 2n-3

• direction (dx, dy)
– 1 <= dy <= dx <= n-1, gcd(dx, dy)=1

– t(dx, dy) = (n - dx)(n - dy) offsets

– #lines = ∑dx,dy t(dx, dy) - t(2dx, 2dy) = f(n, 1) – f(n, 2)

– f(n, k) = ∑dx,dy (n - k dx)(n - k dy)

• f(n, k) = ∑dx=1..(n-1)/k ∑dy=1..dx (n - kdx)(n - kdy), gcd(dx,dy)=1

= ∑dx=1..a ∑dy=1..dx (dx ⊥ dy) (n
2 - kndx - kndy + k2dxdy)

= ∑dx=1..a n2 ϕ(dx) - kn dx ϕ(dx) - kn F(dx) + k2dx F(dx)
= ∑dx=1..a n2 ϕ(dx) - kn ϕ’(dx) - kn F(dx) + k2F’(dx)

– precompute cumulative sums of ϕ, ϕ’, F, F’

• ϕ(x) = number of integers coprime to x (Euler’s phi)
O(n log n)

• F(x) = sum of integers coprime to x
F(x) = x ϕ(x)/2 … numbers u and x-u coprime to x at the same time

D - DJ Darko

Update an array of speakers by increasing a range by x or by
setting speakers in a range to a “normalized” value.

• ranges of speakers with the same value
– store only differences (index, difference)

• increase volume
– two changes: at the start (+x) and at the end (-x)

• get volume: prefix sum

• set volume
– extract list of affected ranges and replace with a single range of

normalized volume

• amortized analysis
– increase introduces a const. number of new ranges

– set removes some ranges (or adds at most two)

• computing the normalized volume v
– sort by volume, “weighted” median

(volume: costs) … (2: 1+2+1), (5: 7+1), (1: 3+2+5), (7: 4), (2: 2+9)

(1: 3+2+5), (2: 1+2+1), (2: 2+9), (5: 7+1), (7: 4)

– one of existing volumes is optimal (or we could move it)

• compare sum of costs in both directions (L and R)

– move from i-th to (i+1)-th volume?

• gain, loss per unit of volume … Li + costi < total_cost / 2

• O(q log n)
– removing and adding ranges takes O(log n) per range

• practical considerations
– introduce 0 differences to align ranges of speakers with the same

volumes with query bounds

– use a static tree (Fenwick, segment tree) and store locations of
nonzero leaves in a separate set

• find affected ranges in the set in O(log n)

• find the actual volume of each range in O(log n)

J - Repetitions

Find the longest repetition for each given substring.

• square factors, Main-Lorentz (repetitions in a string)
– divide & conquer: left half, right half, crossing the middle?

• test(u,v) = testLeft(u,v), testRight(u,v)

– consider different lengths k

– b … pref(v, k) = longest prefix of v starting at k (z-algorithm)

– a … suf(v, k) = longest suffix of u ending at k in v (pref(u’+v’))

– |a| + |b| >= k, |a|,|b| <= k, leftmost – maximize |a|

s

t

u v

a ab b

k

• complexity O(n log n)
– O(|u|+|v|) for testing a pair of adjacent substrings

– O(n) at each of the O(log n) levels

• generalize to substring queries
– store results of the D&C tree

– consider occurrences at bounds (test)

• merge results from smaller towards larger sections of size 2i

• test(s1, s2), test(s1+s2, s3)

• test(s4, s5), test(s3, s4+s5)

• |s1|+|s2|< 2|s2|, |s1|+|s2|+|s3|< 2|s3|

– O(n)

s1 s2 s3 s4 s5

C - Cactus Cutting

Count the number of ways of cutting a cactus graph into
sticks (paths of length 2).

• directed sticks (towards center)
– class of solutions

– k incoming edges (even k)
(k-1)(k-3)… = (k-1)!!

– directing an edge produces two almost independent problems

• DFS tree
– back-edges … disjoint cycles

– f(v, p, c) … number of cuts into sticks
of subtree rooted at v with parent edge
pointing towards v (p=1) and cycle edge
pointing down the tree (c=1)

– every child edge can be directed either way and contributes to v

• no edges: f(u, 1, c)

• 1 edge: f(u, 0, c)

– child whose edge is first in a cycle contributes:

• no edges: f(u, 1, 1)

• 1 edge: f(u, 0, 1) + f(u, 1, 0)

• 2 edges: f(u, 0, 0)

– find cases that contribute together exactly k edges?

v

u

• polynomials
– each child represented as (a+bx) or (a+bx+cx2)

– product: coefficient at xk counts solutions that contribute k edges

• consider contribution of p and c (in case of last node in a cycle)

– multiply a list of polynomials (merge)

• FFT
– careful with precision!

– split the polynomial into two smaller ones A(x) = A1(x) + CA2(x)
A B = A1 B1 + C (A1 B2 + A2 B1) + C2 (A2 B2)

– 4 FFTs

• O(n log2 n)

• additional optimizations
– multiply small polynomials naively

– p has no effect on the product

– c effects just one term in the product (child that is part of the cycle)

– handle factors C or Cx separately (leaves)

The End

